The signed permutation group on Feynman graphs
نویسندگان
چکیده
منابع مشابه
On the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملOn net-Laplacian Energy of Signed Graphs
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
متن کاملMore Equienergetic Signed Graphs
The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction ...
متن کاملon $bullet$-lict signed graphs $l_{bullet_c}(s)$ and $bullet$-line signed graphs $l_bullet(s)$
a emph{signed graph} (or, in short, emph{sigraph}) $s=(s^u,sigma)$ consists of an underlying graph $s^u :=g=(v,e)$ and a function $sigma:e(s^u)longrightarrow {+,-}$, called the signature of $s$. a emph{marking} of $s$ is a function $mu:v(s)longrightarrow {+,-}$. the emph{canonical marking} of a signed graph $s$, denoted $mu_sigma$, is given as $$mu_sigma(v) := prod_{vwin e(s)}sigma(vw).$$the li...
متن کاملWeak signed Roman domination in graphs
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2016
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4961517